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ABSTRACT

A channel with 40 to 1 aspect ratio and rectangular cross-section is
used to study the effects of imposed oscillations on transition from
laminar to turbulent flow. Oscillations are imposed using a single
rotating vane located in the flow downstream of the test section.
Flows with Reynolds numbers ranging from 1100 to 3580 and
Strouhal numbers from 0.0211 to 0.2418 are studied. For all cases,
time-averaged velocity profiles are unaffected by imposed oscillations.

Imposed oscillations have a destabilizing effect on the flow near the
edge of the Stokes layer. Turbulence intensity magnitudes with
imposed oscillations show that transition to turbulence begins at lower
Reynolds numbers and extends over a wider range of Reynolds
numbers than when no imposed oscillations are present. In addition,
higher levels of intermittency are present with imposed oscillations
for Reynolds numbers 1900 to 2200 at y/d = 0.90. At Reynolds
numbers from 1450 to 1800, frequency spectra evidence high
intensity intermittent turbulent fluctuations, followed and preceded by
quiescent flow, both with and without imposed oscillations. A center
mode of secondary instability is evidenced by high values of normalized
longitudinal turbulence intensity measured in the channel center
when no oscillations are imposed on the flow. Imposed oscillations
are found to suppress this center mode of secondary instability, as
evidenced by reductions in longitudinal turbulence intensity values

near the channel center.
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I. INTRODUCTION

A. BACKGROUND

Flow oscillations and unsteadiness are present in many practical
flow situations occurring in aerodynamics, naval engineering, bio-
engineering, and wind engineering. Most of these flows, especially
those of technological interest, also undergo transition from a laminar
state to a turbulent state. Transition is extremely complex by itself
and when it also interacts with flow oscillations and unsteadiness,
accurate prediction of the location and extent of transition and the
accompanying changes of important flow properties is even farther
beyond present modelling and computational abilities. Consequently,
experiments are needed to elucidate flow behavior. According to
Shemer [Ref. 1], such experiments should be "restricted to the
simplest and most well-defined conditions,"” in order to "obtain a clear
physical description of a fluid dynamical process."

The present study employs a straight channel not only to
investigate a situation consistent with Shemer's [Ref. 1] suggestion, but
also because this flow has not yet been studied experimentally. Even
though some experimental results are available for pipe flows and
some analytic and numeric results are available for channel flows, the
author knows of no other experiments, other than the current work,
performed to study the stability or transition of plane channel flow

with imposed oscillations.




The imposed flow oscillations are induced in the present study
using a single rotating vane located in the flow downstream of the test
section. The device is similar to the rotating profiled sleeves
employed by Tu and Ramaprian [Ref. 2], Ramaprian and Tu ([Ref. 3]
and Stettler and Hussain [Ref. 4] to study the influences of sinusoidal
oscillations on pipe flows. Their sleeves are used in water and operate
simply by altering the exit flow area. Other studies of the influences of
imposed oscillations on pipe flows use reciprocating pistons in
cylinders to produce the unsteadiness [Ref. 1], [Ref. 5] to [Ref. 11].
Simpson et al [Ref. 12] use a rotating blade damper system at the inlet
of their wind tunnel, upstream of screens and honeycomb, in order to
study the effects of unsteadiness on turbulent boundary layer flows. By
changing the motion of the five individual damper blades, sinusoidal
perturbations to the flow are produced with amplitudes amounting to
11-93 % of the maximum velocity over frequencies from 0.6-2 Hz.

Of the experimental studies of transitional flows in pipes, Merkli
and Thomann [Ref.5], Sergeev [Ref. 6], Hino and Sawamoto [Ref. 7],
Hino et al [Ref. 8], Gerrard [Ref.9], Gilbrech and Combs [Ref. 10],
Sarpakaya [Ref. 11], Ramaprian and Tu [Ref.3], Shemer [Ref. 1], and
Stettler and Hussain [Ref. 4] also examine the effects of imposed
oscillations. Of these studies, [Ref. 5] to [Ref. 8] investigate the
instability of sinusoidally modulated pipe flow with zero mean flow.
Gerrard [Ref. 9] conducts his experiments at the transition Reynolds
number of 3770. He relates variations of turbulent flow over individual

flow oscillations to magnitudes of vorticity diffusion. Diffusion rates




are then determined by a Stokes number equal to the ratio of the pipe
radius to distance the vorticity diffuses during the period of one
oscillation cycle. Gerrard also suggests that, with high oscillation
frequency, viscous effects are confined to a very thin Stokes layer near
the wall where the fluid is retarded. Gilbrech and Combs [Ref. 10] and
Sarpakaya [Ref. 11] examine the effects of amplitude and frequency of
imposed oscillations on the growth rate of artificially introduced plugs.
Both investigators indicate that oscillations increase the critical
Reynolds number as long as they are not so large as to cause local flow
reversals. Ramaprian and Tu [Ref. 3] study transitional pipe flow at a
mean Reynolds number of 2100. They indicate that flow oscillations at
frequencies ranging from 0.05 to 1.75 Hz increase the critical
Reynolds number only when the turbulent intermittency is small.
With higher intermittency levels, the authors suggest that imposed
oscillations affect the flow only when the oscillation frequency is near
the characteristic frequency of the turbulence. Shemer's [Ref. 1] work
focuses on large oscillation amplitudes at a single low frequency. For a
mean Reynolds number of about 4000 and an oscillation frequency of
0.37 Hz, he concludes that transition is governed primarily by the
instantaneous Reynolds number. Stettler and Hussain [Ref.4] present
results for Stokes numbers as high as 70. The authors provide a
three-dimensional map of the stability-transition boundary, and also
indicate that transition in pipes is associated with plugs of turbulence

which can grow or shrink in size.




Numerical and analytical investigations of the influences of imposed
unsteadiness on flow in a plane channel are described by Grosch and
Salwen [Ref. 13], Herbert [Ref.14], Hall [Ref. 15], von Kerczek [Ref. 16]
and Singer, et al [Ref. 17,Ref. 18]. In addition to these studies, Tozzi
[Ref. 19] provides results of a numerical investigation of the influences
of imposed unsteadiness on flow in a pipe, and Davies [Ref. 20]
provides a review of much work done on the stability of time periodic
flows. Of the above mentioned analytic studies of plane channel flow,
Grosch and Salwen [Ref. 13] solve a set of linearized equations by
integrating through one period of oscillation. They conclude that
flows with small amplitudes of imposed unsteadiness are more stable
than steady flows, where the degree of stabilization depends upon
interactions between shear waves generated by the imposed oscillation
and flow disturbances. A modified version of Grosch and Salwen's
energy analysis is described by Herbert [Ref. 14]. Hall [Ref. 15] reports
results obtained with high frequency oscillations and concludes that
such oscillations are slightly destabilizing irrespective of amplitude.
von Kerczek [Ref. 16] modulates the pressure gradient in a
perturbation analysis, and shows that the oscillating flow is more
stable than the steady flow for frequencies of imposed oscillations
greater than about one tenth of the frequency of the steady flow
neutral disturbance. However, at both very low and very high
frequencies of imposed oscillations, the flow is slightly unstable.
Singer et al [Ref. 17, Ref. 18] describe results from a direct Navier-

Stokes simulation of flow in a plane channel with imposed




unsteadiness and indicate that imposed sinusoidal oscillations provide
a stabilizing effect at all but very low frequencies. Significant variations
in the amplitudes of Tollmien-Schlichting waves are also noted which
depend upon the Strouhal number and amplitude of the oscillations, as
well as on initial amplitudes of the Tollmein-Schlichting waves.
Tozzi's [Ref. 19] study of pipe flow shows that imposed oscillations are
stabilizing up to very high amplitudes of imposed oscillation, a result
in contradiction to a number of experimental studies which show that

flow is destabilized even at low amplitudes.

B. OBJECTIVES

This study is undertaken to obtain experimental data which shows
the influences of 1 Hz, 2 Hz, 3 Hz, and 4 Hz imposed oscillations on
laminar, transitional, and turbulent flows in a rectangular cross-section
channel with 40 to 1 aspect ratio and 4.27 meter test section length.
The results presented here are an extension of works by LCDRs
T. Coumes, F. Greco, and J. Longest at NPS. Their studies found that
imposed oscillations at 1 Hz and 2 Hz have a destabilizing effect on the
longitudinal velocity fluctuations in the Stokes layer at some Reynolds
numbers.

With a rotating vane assembly located downstream of the test
section to produce the oscillations, Strouhal numbers from 0.0211 to
0.2418 are produced at Reynolds numbers ranging from 1100 to
3580, where each of these quantities is based on bulk mean velocity

and channel height. With these conditions, experimental results in




the transition regime are included, which is important since the
author knows of no other experimental studies, other than the current
ones, in this area. In addition to providing a better understanding of
some of the physical mechanisms which occur, data are also given on:
(1) interactions between the imposed unsteadiness and flow
phenomena which result in modifications to the waveform of the
imposed unsteadiness, as well as (2) effect of imposed oscillations on
the spectra and intermittency variations in the flow. Compared to
existing numerical and analytical studies of transition phenomena [Ref.
13] to [Ref. 18], the present work thus provides a basis of comparison,
and includes experimental conditions, such as the level of inlet
disturbance, which are difficult to include accurately in numerical and

analytic analyses.

C. THESIS ORGANIZATION

In the sections which follow, details of the experimental facilities,
the unsteadiness generating device, the data acquisition system, and
the flow visualization equipment are given in section 1I. The
experimental procedure, including calibration of the Hot-Wire Probe,
channel validation, flow measurement, spectral analysis. and flow
visualization are described in Section IlIl. Results and discussion,
including an uncertainty analysis are given in section IV. Section V

contains the summary and conclusions.




II. EXPERIMENTAL FACILITIES

A. CHANNEL

The channel employed was designed especially for the present
study. The facility is located in the laboratories of tne Department of
Mechanical Engineering of the Naval Postgraduate School, and is
shown schematically in Figure 1. This figure also includes the
coordinate system employed, where x is the longitudinal coordinate
measured from the downstream edge of the nozzle, y is normal to the
top and bottom surfaces of the channel and measured from the bottom
wall, and z is the transverse coordinate, measured from the spanwise
centerline of the channel.

The straight test section of the char~-! is 4.27 m in length with
inside dimensions of 1.27 cm i{n height and 50.8 cm in width, giving
an aspect ratio of 40 to 1. The top and bottom walls of the channel are
made of 6.35 mm thick Plexiglass, and supported by ribs and cross
beams along the length of the straight sectiori. The side walls are
removable in order to gain access to the inside of the channel. The
inlet flow is managed using a honeycomb, screens and a 20:1
contraction ratio nozzle. Two layers of cheese cloth are also placed at
the inlet to remove dust and dirt from the air entering the channel.
The turbulence level of the flow at the nozzle exit is estimated to be
about 0.06 % at a bulk speed of 3.4 m/s,based on a measurement in

another similar facility.




At the exit of the 4.27 m long test section are three 10.16 cm long
frames. Between the flanges of these frames are a total of four
screens, in addition to a honeycomb placed just upstream of the last
screen. The middle frame houses the device used to impose
unsteadiness onto the flow. A 45.72 cm long two- dimensional diffuser
with a total angle of 3 degrees is located downstream of the
honeycomb section. This diffuser connects to the exit plenum
chamber which provides a volume of uniform low-pressure air at the
diffuser exit. Inside dimensions of the plenum are 60.96 cm x 60.96
cm x 60.96 cm. The plenum chamber is connected to the suction
side of a 5 H.P blower using 5.08 cm inside diameter piping. Flow
through the channel is metered using a 3.81 cm orifice plate assembly

located between the plenum chamber and the blower.

Bulk flow velocities v,, up to 15 m/s may be achieved in the

channel. However, in the present experiments, v,, ranges only from

1.3 m/s to 4.4 m/s. The channel is designed such that transition
occurs after the laminar flow in the channel becomes fully developed,
as indicated by normalized parabolic velocity profiles which are self-
similar with respect to streamwise development. The initial flow
development length is estimated to be vary between 0.56 m and 1.86
m for Reynolds numbers from 1100 to 3660 (Schlichting [Ref. 21}).
This leaves 3.71 m to 2.41 m of fully developed flow in the straight
portion of the channel.




B. UNSTEADINESS DEVICE

Periodic variations of the flow rate can be induced in the test
sections of wind tunnels, channel flows and pipe flows by introducing
a periodic blockage at the inlet or exit of flow passages. The most
important requirement of such an unsteady device is the ability to
produce controlled deterministic and periodic unsteadiness without
adding other disturbances. To achieve this in an open circuit
induction channel, the unsteady device is best located just
downstream of the test section. With this approach, wakes and other
flow disturbances resulting from the operation of the unsteady device
are not convected into the test section.

Such an approach is employed in the present study. The present
design is shown in Figure 2. Since the height of the channel interior
is only 1.27 cm, a single rotating vane is used to impose the required
unsteadiness in the flow. Because the vane is located between the
straight test section and the exit plenum (Figure 1), the rotating vane
varies the amount of suction applied to the test section by varying the
amount of flow resistance at the vane location.

The vane is made of a 3.2 mm thick brass strip with rounded
edges, and Figure 2 shows that it spans a portion of the channel height
when oriented normal to the flow. The vane is supported at the ends
by a 3.2 mm diameter shaft and bushings that are fitted to the side
walls of the frame. Three intermediate spanwise struts are provided
to increase the rigidity of the vane as it rotates. One of the shafts is

extended to accommodate a 48 tooth spur gear. This gear is driven by




a spur pinion with 12 teeth, which is mounted on the shaft of a
Superior Electric, M092-FD310 Stepper Motor. The motor is driven
by a Modulynx MITAS PMS085-D050 Drive, which is controlled by a
Modulynx MITAS PMS085-C2AR Drive Controller. With this
arrangement, the motor shaft may be positioned at 1/200th
increments of one motor shaft revolution, and operated at speeds up
to 100 revolutions per second. With a gearing ratio of 1 to 4 and two
cycles of imposed flow oscillations per vane rotation, one motor
revolution corresponds to one half of one cycle of an imposed flow
oscillation. The imposed oscillation frequency is set by programming
the Drive Controller for a particular motor speed which then sets the
vane rotation rate. The amplitude of the imposed unsteadiness is
altered by changing the width of the vane. A vane width of 8.7 mm is
employed in the present study.

When the vane produces a quasi-steady flow, the flow behaves as if
the vane rotation rate is infinitely small, or as if the vane is fixed at
each position and allowed to reach steady-state behavior. The
variation of the mean velocity under such circumstances is
approximately sinusoidal, as illustrated in Figure 3. This waveform
results because, momentarily, mass flow rates (and resulting velocities
in the straight test section) are roughly proportional to the flow
passage area provided by the vane as it rotates. In Figure 3, flow
resistance is maximum and velocity in the straight section is minimum

when the vane is normal to the flow with position 2. With vane
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position 4, the flow resistance is minimum and the velocity is
maximum.

Under actual conditions, the flow around the rotating vane is quite
complex. Velocity and pressure variations are affected not only by the
varying flow resistance from the vane, but also by other fluid dynamic
effects such as dynamic flow separation and flow inertia. At large vane
speeds, the vane rotations will likely result in a local swirl with
blockage like a solid cylinder and minimal bulk flow periodicity.
Imposed oscillatory flow behavior is thus different and difficult to
predict compared to quasi-steady flow. The assessment of the
performance of the rotating vane as it produces imposed velocity

oscillations in the test section is given in Subramanian, et al. [Ref. 22].

C. FLOW MEASURING INSTRUMENTS

A schematic of the flow measurement equipment is presented in
Figure 4.

1. Hot-wire Probe and Probe Positioning

A DANTEC 55P51 hot-wire probe, with sensor diameter of 5 um

and sensor length of 1.25 mm, is used for instantaneous velocity
measurements. The probe is mounted with the wire horizontal and
normal to the flow direction. The probe position is controlled by a
rotatable lever arm which can adjust it through a range from y/d of
0.25 to 0.90. The lever arm is calibrated for probe positioning with an
accuracy of approximately 0.5 mm. The probe is fixed with respect to

11




the longitudinal and horizontal axes at 3.81m from beginning of
channel and 97.6 mm left of spanwise center.

2, Hot-wire Bridge

A DISA 55M10 constant-temperature bridge is used to operate
the hot-wire probe at an overheat ratio of 1.8. When connected to this
bridge with the same settings used for measurements, the hot-wire is
calibrated in the potential flow of a wind tunnel. The DC voltage from
hot-wire bridge is measured using a Hewlett-Packard (HP) 3466A
digital multimeter.

3. Signal Conditioner

A DANTEC Model 56N20 signal conditioner is also used to
amplify and filter the voltage from the bridge. During measurements,
an amplifier gain of 10 is used, the low-pass filter is set to 10 kHz, and
the high pass filter is set at 0.1 Hz, to reduce the high frequency noise
signal and the D.C. bias.

4. High Speed Data Acquisition System

The output of the signal conditioner is fed into a HP 6944
Multiprogrammer with a buffered high speed A/D conversion system.
The Multiprogrammer cards are driven using HP CAT 14752A
software on a HP 9000 Series Model 310 computer.

For phase sampling, data acquisition must be triggered so that data
are obtained at different phases of each cycle of flow oscillation. In
most studies, the trigger source is derived from the device used to
oscillate the flow or from the motor drive assembly used to move this

device. Ramaprian and Tu [Ref. 3] used a pulse trigger produced by a
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magnetic pickup at the instant of maximum slot opening during each
revolution of their rotating sleeve. Their data acquisition system was
programmed to sample the flow every 1/100 of the period of a sleeve
revolution, starting from the instant when the pulse trigger is
received.

In the present experimental set-up, the motor used to drive the
vane generates voltage pulses sequentially in each of the four field
windings used to step the motor. 50 pulses are available to each field
winding for each revolution of the motor shaft, giving a total of 200
pulses per revolution. The pulses from one of the four field windings
are used to trigger the data acquisition system providing a situation in
which data acquisition is precisely synchronized with the vane

rotation. Then, for a given vane imposed oscillation frequency, f __.

the data sampling rate (TR) is given by
TR (samples/sec.) = f,__ x (pulses/motor shaft rev.) x

(motor shaft rev./imposed flow oscillations)
f x 50 x 2

oscC

100 x fosc

With this approach, 100 samples of data are obtained, spaced
uniformly, over each period of flow oscillation, providing a phase
resolution of 1/100 of the imposed oscillation cycle. Data are acquired
for 640 flow oscillations to fill the memory buffer of the computer (64
kbytes), after which, data are stored in the computer memory. In the
memory, they are packed into 640 arrays of 100 samples each and

stored on a disk for later processing. In many cases this acquisition
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procedure is repeated up to 8 times, with a similar vane starting
position each time to insure that data acquisition is always initiated at
the same phase of the flow oscillation. Because non-uniform width
voltage pulses are generated by the motor drive as the motor is started
and stopped, the first 6000 points are ignored as data are processed,
and all acquisitions are completed well before the vane motor is
stopped. When no unsteadiness is imposed on the flow, data
acquisition is triggered by the signal from a square-wave function
generator set to the same frequency as employed with imposed
unsteadiness.
5. Data Storage

A data acquisition program, HOTWIREPAV, is used in the
Hewlett-Packard microcomputer to acquire the output of the A/D
converter. The instantaneous voltage is then stored on 3.5 inch
diskettes for further processing. The heading to each data set
includes the time and date, the bulk velocity, the oscillation

frequency, and the average voltage from the digital multimeter.

D. FLOW VISUALIZATION

1. Smoke Wire System
Flow visualization results are obtained using a modified Vertical
Smoke Wire Instrument, manufactured by Flow Visualization Systems
of Bolingbrook, IL. The wire is made of 0.127 mm diameter nicrome,
and is placed across the span of the channel at y/d = 0.90. In order to

ensure that the wire is held taut as it is energized, a tension device is
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installed at one end. The wire is then connected to an AC/DC
converter whose voltage is supplied by a Calrad 45-740 variac. As the
wire is energized, a thin sheet of smoke is produced for 2-8 seconds.
2. Video Equipment

Smoke patterns are then recorded on video film using a Sony
DXC-M3 Video Camera with VCL-914BY Zoom Lens and VO-6800
Portable Videocassette Recorder and then replayed on a Sony
Trinitron video monitor using a Sony model VO-5800 Videocassette
Recorder with a still-frame feature. The frames are photographed
using a Nikon F-3 SLR camera with Kodak Tri-Xpan film, using the
method described by Longest [Ref . 23], Coumes [Ref. 24], and Greco
[Ref. 25]. The video camera is set on filter number 1 with the zoom
lens set for 0.7 m and focused to optimum clarity. The still photos are
taken in a darkened room with the monitor intensity set low and the
contrast set high to show the smoke patterns. The still camera is set

on {8 with shutter speed 1/15 sec., using ASA 400 film.
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III. EXPERIMENTAL PROCEDURES

A. HOT-WIRE CALIBRATION

The hot-wire is calibrated in the freestream of the wind tunnel
located in the laboratories of the Mechanical Engineering Department
of the Naval Postgraduate School. During calibration the hot-wire
probe is mounted normal to the flow in the potential freestream flow
of the wind tunnel. The hot-wire is connected to the same hot-wire
bridge previously discussed. Output from the hot-wire bridge is read
on a Keithly 169 Digital Multimeter. Freestream velocity in the wind
tunnel is measured utilizing a Kiel pressure probe, a wall static
pressure tap, and a Validyne PS 309 Digital Manometer. Voltage and
differential pressure readings are taken for a range of pressure drops
corresponding to velocities between 1.0 and 4.0 m/s. The computer
program HWCAL is run on the Naval Postgraduate School's IBM 310
main frame computer to calculate all calibration constants. Following

the calibration, the hot-wire is installed in the straight channel.

B. DATA PROCESSING
1. Bulk Velocity
The bulk flow velocity is calculated from the pressure drop
across the orifice plate located in the outlet piping which connects
the outlet plenum and the blower. The delta P is measured in inches

of water using a Validyne Model PS 309 Digital Manometer . Figure 5
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shows the relationship of bulk velocity to delta P. The bulk velocity is
used to compute the Reynolds number and the Strouhal number in the
channel.
2. Instantaneous Velocity
Instantaneous voltages are converted into instantaneous velocities
using a look-up table that accounts for hot-wire calibration

coefficients, amplifier gains and mean voltage levels. Such instan-
taneous velocity data are shown in Figure 6 for Re = 3660 (v,,,= 4.38

m/s) and a Strouhal number of 0.036 (f,,. is 2 Hz) along with the
corresponding phase-averaged velocity trace.

With imposed periodic flow, instantaneous velocities can be
considered to be the sum of three components such that
U=0+ 0+ u', v re U is the time-averaged velocity, J is the
periodic veloci.y and u'is the fluctuating component.

3. Phase Averaging

In the present study J and U are combined as the phase-
averaged velocity ( u ), such that U= U +u', following Ramaprian and
Tu [Ref. 3]. Thus, for a steady flow with no periodic velocity, u is then
equal to U . U is then determined from phase-averaging instantaneous

velocity results using the equation given by

100
N |10° 1 ncycl .
u (n)in=1 = m ZU(m, n)i
m =1 n=1

Here, m and n correspond, respectively, to the number of cycles and

to the number of locations across each phase where data are sampled.
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Typically 580 to 4640 cycles are ensemble averaged to obtain a phase-
averaged velocity trace, depending on the magnitude of the
fluctuations relative to the amplitude of the phase-averaged velocity.
With laminar flows, the former number are used. With fully turbulent
and transitioning flows, signals like the one in Figure 4 are present
and 4640 cycles are averaged. With this approach, statistically stable
samples are obtained even for higher Reynolds numbers where
fluctuation levels are significant with respect to the local mean
velocity. When time-averaged velocity U is determined, averages are
obtained from 58 thousand to 464 thousand points depending upon
the amount of unsteadiness in the signal.

When noise causes individual data samples to drop-out or deviate
significantly from expected behavior, they are replaced using the
sample acquisitioned 100 points before, which, with phase-averaging,
is the point at the same phase from the previous flow oscillation.
Because such occurrences happen less than 1 % of the data sampling
time, no evidence of these corrections is found in ensemble- and
time-averaged results.

The program for processing the data and calculating the phase-
averaged velocity, the phase-averaged rms velocity, the mean velocity,
and the time-averaged rms velocity, and for plotting the phase-

averaged velocities versus Reynolds number is called DATAP.
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C. SPECTRAL MEASUREMENTS

The spectra of the analog voltages from the hot-wire bridge are
analyzed using a Hewlett-Packard Model 3562A Dynamic Signal
Analyzer (DSA). The display parameters are set on voltage squared
divided by Hz versus frequency from 0.1 to 20 Hz or from 0.1 to 200
Hz. A typical setting of the other parameters are shown in Figure 7.
Internal integrating and storage capacities of the DSA are used to take
and average 20 sets of readings to produce time-averaged frequency
spectra at each flow velocity. Time-averaged frequency spectra were
produced using 40 sets of readings for Reynolds numbers between
1400 and 1800. A split screen display is also used to simultaneously
show voltage squared divided by Hz versus frequency and voltage
versus time from O to 3.2 seconds. The time plot is limited to 3.2

seconds of display by the design of the DSA.
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IV. RESULTS AND DISCUSSION

A. CHANNEL FLOW VALIDATION

To partially validate measurement procedures as well as the
behavior of the flow in the channel, the mean velocity profile is
measured when the flow is laminar. The normalized mean velocity
profile is then compared to the theoretical velocity profile for fully
developed laminar channel flow given by Schlichting [Ref, 21] as:

U /umax = 4.0 y/d - (y/d)2|

Here, U is the local mean velocity and umg is the maximum of this
velocity, which occurs at the center (y/d = 0.5) of the channel. The
velocity profile taken at x/d = 300, at Reynolds number of 1103 is
shown in Figure 8. The bulk flow velocity is 1.32 m/s as measured
from the orifice pressure drop. The maximum centerline velocity is
1.51 m/s. The normalized velocity profile is parabolic in shape and
agrees closely with the theoretical relationship. The profiles at this
and other Reynolds numbers are also consistent with those measured

by Coumes [Ref. 24] and Greco [Ref. 25].

B. EFFECT OF IMPOSED OSCILLATXONS ON MEAN VELOCITY
PROFILES AT VARIOUS REYNOLDS NUMBERS
Mean velocity profiles, with and without imposed oscillations at 1
Hz are shown in Figures 9 to 14 for Reynolds numbers from 1103 to
3584. The local mean velocities normalized by umax are plotted on

the vertical axis and the normal distances measured from the bottom
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wall, y, normalized by the the channel depth, d, are plotted on the
horizontal axis. Without the oscillations, profiles change from a laminar
parabolic shape at Re = 1103 to a fuller shape typical of a turbulent
flow at Re = 3584. At Reynolds numbers of 2005 and 2197, shapes of
profiles are qualitatively between the ones which exist for fully laminar
conditions and fully turbulent conditions. For all Reynolds numbers
studied, profiles with 1 Hz imposed oscillations are nearly identical to
those with no imposed oscillations. This observation is consistent
with the the results of Coumes [Ref. 24] and others (e. g. Ramaprian

and Tu [Ref 3]) for small amplitudes of imposed oscillations.

C. EFFECT OF IMPOSED OSCILLATIONS ON RMS VELOCITY

PROFILES AT VARIOUS REYNOLDS NUMBERS

Profiles of the normalized longitudinal turbulence intensity, with
and without 1 Hz oscillations, are shown versus y/d in Figures 15 to
20. The quantity on the ordinate is the intensity (hereafter referred
to as rms velocity) normalized by upax . The figures show how
normalized rms velocity profiles change with Reynolds number. At Re
= 1103 (Figure 15), the flow is laminar, and the rms profile is due to
very low intensity fluctuatic .s indicated by the small rms values. With
oscillations imposed at 1 Hz, fluctuations are lower than without
imposed oscillations. At Re = 1579, Figures 16 shows that normalized
rms velocities are greater near the center of the channel than near the

walls. Little change in the profile is evident with imposed oscillations.
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At Reynolds numbers of 2005 and 2197, Figures 17 and 18 show
that flows without imposed oscillations have rms velocity profiles
which are similar in character to the ones which exist at Re = 1579.
To the best of the author's knowledge, this is the first time that
normalized rms velocities which are higher in the center of the
channel than near the wall are experimentally observed when no
imposed oscillations are present. From a direct numerical simulation
of transition in plane Poiseuille flow, Zang and Krist [Ref 26] indicate
that a "center mode" of secondary instability ( i. e. the disturbances
that grow near center of the channel) is an important feature of the
flow at Reynolds number near the critical value. They show that the
amplitude of fluctuations increases significantly in the center of the
channel when this secondary instability occurs. Other studies (e.g.,
Stettler and Hussain [Ref 4], Coles [Ref 27], Wygnanski and Champagne
[Ref 28] and Rubin, Wygnanski and Haritonidis [Ref 29]) of transition
in pipe flows indicate that flow disturbances originate near the center
of the pipe in the form of "plugs or puffs”. It is conjectured that a the
center mode instability in the channel flow is similar to the "plug" type
transition phenomena. With the 1 Hz imposed oscillations at Reynolds
numbers of 2005 and 2197, the normalized rms velocity is decreased
in the center of the channel. Thus, the imposed oscillations suppress
the growth of secondary disturbances in the center of the channel at
these two Reynolds numbers. It is interesting to note that imposed

oscillations have a stabilizing influence on plug type transition
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phenomena in the experiments of Gilbrech and Combs [Ref. 10] and
Sarpkaya [Ref. 11].

With Reynolds numbers of 2548 and 3584 when flow is fully
turbulent, Figures 19 and 20 show normalized rms values which are
higher near the wall than near the center of the channel. When 1 Hz
oscillations are imposed on the flow, results at the same Reynolds

numbers are similar to data obtained without imposed oscillations.

D. EFFECT OF IMPOSED OSCILLATIONS ON NORMALIZED RMS
VELOCITY AS A FUNCTION OF REYNOLDS NUMBER
1. Near-Wall Region
Figures 21 to 24 are plots of the rms velocity normalized by
local mean velocity as a function of Reynolds number. These data were
obtained near the edge of the Stokes layer at y/d = 0.90 The Coumes
[Ref. 24] and Greco [Ref. 25] data labelled y/d = 0.90 are actually for a
probe position of y/d = 0.89. The data in Figures 21 to 24 are shown
for flow with no imposed oscillations and with imposed oscillations at
1 Hz, 2 Hz, 3 Hz, and 4 Hz. Sampling frequencies used to obtain the
results without imposed oscillations shown in each figure match
sampling frequencies used to obtain the results with imposed
oscillations, which is 100 times the imposed oscillation frequency.
In each plot, the normalized rms velocity generally increases in
magnitude as Reynolds number increases from 1100, until a maximum
is reached at a Reynolds number ranging from 2000 to 2400. As

Reynolds number increases further, normalized rms values then
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decrease. Local maximum Reynolds numbers are believed to indicate
the upper limit of transition phenomena, and the subsequent decrease
is nearly linear and mostly due to increasing local mean velocity with
Reynolds number. Referring to data obtained without imposed
oscillations, maxima in Figures 21 to 24 show a slight increase with
sampling frequency. This is because more turbulent energy is
captured as higher sampling frequencies are used to acquire data.
When imposed oscillations are present, data in each figure show that
maximum values of the normalized rms velocity occur at a lower
Reynolds numbers compared to resuits obtained without imposed
oscillations. Thus for the range of experimental conditions examined,
imposed oscillations have a destabilizing influence on transition
events.
2. Center of the Channel

Figures 25 and 26 show the variation of the rms velocity
normalized with respect to the local mean velocity as a function of
Reynolds number, with and without imposed oscillations at 1 Hz for a
probe position of y/d = 0.50. The results in Figure 26 are from the
study of Coumes [Ref. 24]. The plots show that the rms velocity
increases in the flow without oscillations from Re = 1100 until Re =
2100 to 2200, and then decreases to the same values which exist in
the flow with imposed oscillations. The increase and decrease which
occurs without imposed oscillations occurs rather abruptly over the
Reynolds numbers range from 1600 to 2550. It is believed that this

type of behavior is due to strong nonlinear amplification of

24




subharmonic secondary instabilities, as suggested by Zang and Krist
[Ref 26] and Herbert [Ref 14]. With the present situation, the effects
of secondary instabilities (near the channel center) appear to
overwhelm the effects of primary instabilities (near the wall) and
provide a route for sudden transition to turbulence.

With imposed oscillations at 1 Hz, the rms velocities in the center
of the channel are lower than without imposed oscillation. Thus, a
comparison of results in Figures 25 and 26 to results in Figures 21 to
24 indicates that fluctuating intensities in the mid-portion of the
channel are more readily altered (reduced) by imposed oscillations at

1 Hz than flow nearer the wall at y/d = 0.90.

E. EFFECT OF REYNOLDS NUMBER ON PHASE-AVERAGED
VELOCITY TRACES
Figures 27 to 35 show traces of phase-averaged velocity, &
obtained with imposed oscillations at 1 Hz for Reynolds numbers from
1579 to 3584. U is calculated using the multi-run averaging
technique as explained in Section III B 3. In each figure, the phase-
averaged velocity versus phase angle is shown on top and the phase-
averaged rms velocity versus phase angle is shown on the bottom.
Figures 27 and 31 present results obtained from averages of 2320
cycles. Figures 28 to 30, and 32 to 35, present results obtained from
averages of 4640 cycles.

At Re = 1579 and 2548, u variations are qualitatively sinusoidal.
However, at Reynolds numbers of 1693, 2005 and 2197, u variations
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are non-sinusoidal evidencing interactions between imposed
oscillation and transitional flow structures. Figures 36 and 37 show
phase-averaged distributions obtained with oscillations imposed at 3
Hz and 4 Hz, respectively. Even greater distortion from a sinusoid is
evident if these data are compared to 1 Hz data, which is partially
because of interactions between flow structures and imposed
oscillations, and partially because averages are obtained using only 580
phases.

Phase-averaged normalized rms velocity versus phase angle in
Figures 27 to 37 generally do not show any significant influences of
either Reynolds number or the imposed oscillation frequency. The
only exceptions are evident in Figures 27 and 32, which show
sinusoidal traces that appear to be synchronized with the traces of

phase-averaged velocity.

F. EFFECT OF IMPOSED OSCILLATIONS ON INTERMITTENCY

AT VARIOUS REYNOLDS NUMBERS

The intermittency factor, y, is defined as the fraction of time that
flow is turbulent. If yis 1.0 then the flow is turbulent 100 percent of
the time. Ifyis 0.0 then the flow is non-turbulent 100 percent of the
time. The intermittency factor is determined by identifying turbulent
and the non-turbulent portions of velocity-time traces. In this study,
the second time-derivative of the instantaneous velocity is used to
determine y. An on-off temporal identification function, ID, is defined

such that,
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1D =1,if-‘2;—sz Y Thr, and

ID =0, otherwise.

The threshold factor, Thr, is determined for different Reynolds
numbers using the correlation,
Thr = {105 - (64.66 * (Vp)k-1.89))}

If the Thr value falls less than 20 then its value is reset to 20. This
correlation is employed because it leads to intermittency values which
are consistent with turbulent events detected visually from flow
visualization results. The intermittency factor is obtained by averaging
ID values over a sampling time of 580 seconds. Phase averaged ID
distributions are obtained in a fashion similar to that described in
Section III B 3.

Figures 38 and 39 show the intermittency factor plot as a function
of Reynolds number for probe positions of y/d = 0.90 and 0.50,
respectively. Figure 38 shows that the intermittency factor at Re =
1212 is close to zero and increases as Reynolds number increases to
1697. Further increases in Reynolds number result in sharp increases
of the intermittency factor until a Reynolds number of about 2100 is
reached. Beyond this Reynolds number, the intermittency factor
varies very little with Re as data asymptote to y = 1.0. The
intermittency factor of the flow with imposed oscillations is the same
as that for flow with no imposed oscillations at all Reynolds numbers

except those in the high transition range (Re = 2005 to 2100). Within
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this Reynolds number range, the intermittency factor is increased by
up to 10 percent when imposed oscillations are present. With
oscillations imposed at 1 Hz, this type of event occurs at the same
Reynolds number as when normalized rms velocities are maximum.

Figure 39 shows variations of the intermittency factor with
Reynolds number for y/d = 0.50. Here, the variation of the
intermittency with Reynolds number is the same whether or not
imposed oscillations are present. Comparing these results to the ones
in Figure 38 indicates that the change of intermittency factor from a
value near 0.1 to 1.0 occurs over a smaller range of Reynolds numbers
for y/d = 0.50 than when y/d = 0.90. Typical time traces of velocity
signals for these experimental conditions are shown in Figures 40 to
45.

Figures 46 to 58 show plots of phase-averaged ID and phase-
averaged velocity versus phase angle for y/d = 0.90 and various Re.
The only noticeable dependence of ID on phase angle occurs for Re =

2005.

G. EFFECT OF IMPOSED OSCILLATIONS ON FREQUENCY

SPECTRA AT VARIOUS REYNOLDS NUMBERS

The effects of imposed oscillations on frequency spectra of the
voltage signal from hot-wire probes are now discussed. Figures 59 to
98 are plots of the spectral power density (voltage squared divided by
Hertz) versus Hz. Each figure contains two plots, one for a frequency

bandwidth of O to 200 Hz and another for a frequency bandwidth of 0O
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to 20 Hz. Figures 59 to 78 show the spectra for flow with no imposed
oscillations and Figures 79 to 98 show spectra for flow when
oscillations are imposed at 1 Hz . All of these figures are plots of
ensemble averages of 20 spectra. Each spectra used to construct the
ensembles is obtained over a 3.2 second time interval. Plots of 40
averages for flow with no imposed oscillations are shown in Figures 99
to 107. Figures 108 to 116 are plots of 40 averages taken in flow with
oscillations imposed at 1 Hz.

Spectra show energy level increases as the flow velocity and
Reynolds number increase. In the low transition range (Re = 1450)
Figure 62 shows a particularly large energy increase compared to the
plot of the next lower Reynolds number. This is also seen in Figures
99, 100, 108, and 109. At these Reynolds numbers, time traces show
intermittent, large-amplitude fluctuations probably due to passage of
energy containing eddies or packets in otherwise quiescent flow.
These fluctuations are spiky on the time-traces and bear semblance to
a Dirac delta function. Consequently, spectra exhibit a wavy character.
The number of packets of turbulence increases as the flow velocity
increases, as evidenced by results in Figures 117 to 176.

With imposed oscillations, shapes of spectra are not significantly
different from ones obtained with no imposed oscillations. Figures
117, 132, 147 and 162 show results with imposed oscillations which
evidence of passage of turbulent packets in flows which are otherwise

quiescent.
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H. FLOW VISUALIZATION RESULTS

Smoke patterns produced using a smoke wire placed at y/d = 0.90
were recorded using a video camera at Reynolds numbers ranging
from 1600 to 2300 without imposed oscillations and with oscillations
imposed at 1, 2, 3 and 4 Hz. Some transition events are illustrated by
still photographs of video frames presented in Figures 177 to 181. In
each photograph, flow is moving from bottom to top, and a
spanwise/streamwise plane of the channel is shown from the left wall
to the spanwise center. The arrow in the lower left of each
photograph indicates the position of the hot-wire probe and the dark
line extending from the upper left indicates the position of the hot-
wire support arm. Two photographs are shown in each figure, both
obtained at the same Reynolds number, spaced 1/15 of a second apart.

Figures 177 to 179 show the smoke pattern at Re of 1604 and
1696 with no imposed oscillations, and at Re of 1696 with oscillations
imposed at 1 Hz. In all three cases some evidence of the Klebanoff
mode of Tollmien-Schlichting (T-S) waves is apparent. In the last of
these three figures, the Klebanoff mode of T-S waves are seen on the
left and Tollmien-Schlichting waves and ribbon patterns of smoke are
seen on the right. Figure 180 shows flow at Re of 1905 with 1 Hz
imposed oscillations. Ribbon patterns of smoke are evident. Figure
181 shows the flow at Re of 1604. The upper photograph is taken
with 2 Hz imposed oscillations and the lower is with 3 Hz imposed

oscillations. The lower photograph shows evidence of the formation of
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the Klebanoff mode of T-S waves on the left and more two-dimensional
Tollmien-Schlichting waves on the right. The upper photograph
shows ribbons of smoke which probably evidence a packet of vortices

in the flow.

I. UNCERTAINTY ANALYSIS

Uncertainty estimates are based on 95 percent confidence levels,
and determined using the methods described by Kline and McClintock
[Ref. 30] and by Moffat [Ref. 31]. The uncertainty of the phase-
averaged velocity l} is 2.9 %, which, for a nominal value of 2.22 m/s

amounts to 0.064 m/s. Uncertainties of U and & are both 1.2 %.

max
For a nominal value of 2.22 m/s, this is equivalent to 0.027 m/s. The
uncertainty of the phase angle is 5 degrees. If this quantity equals 180
degrees, then this uncertainty is 2.8%. Uncertainties of v,,, and Re
are both 3.5%. For respective values of 1.30-3.00 m/s and 1100-2400,
corresponding dimensional uncertainties are .046-.105 m/s and 40-

85.
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V. SUMMARY AND CONCLUSIONS

The influences of imposed oscillations at 1, 2, 3 and 4 Hz on
transition from laminar to turbulent flow in a straight channel has
been studied for Reynolds numbers between 1100 and 3600 and
Strouhal numbers between 0.0211 and 0.2418.

Results from the study show that mean (time-averaged) profiles are
unaffected by the imposed oscillations at a particular Reynolds number
for all amplitudes and frequencies of imposed oscillation and for the
entire range of Reynolds numbers studied, regardless of whether the
flow is laminar, transitional or fully turbulent. For all three types of
flow, mean profiles additionally exhibit quantitative trends typical of
laminar, transitional and turbulent flows.

Phase-averaged velocity traces show sinusoidal behavior when
oscillations are imposed both at 1, 2,3 and 4 Hz when flow is laminar
(Re = 1103), transitional (Re = 1604), and turbulent (Re = 2548 and
Re = 3584) at all probe positions tested. Phase-averaged velocity
traces of flow with imposed oscillations are less sinusoidal for
transition Reynolds numbers from 1700 to 2150, than for flow
conditions at all other Reynolds numbers. This distortion of phase-
averaged velocity waveforms is of particular interest because :. gives
evidence of viscous interactions between the imposed oscillations and

flow phenomena.
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Imposed oscillations have a destabilizing effect on the flow near
the edge of the Stokes layer. Turbulence intensity magnitudes with
imposed oscillations show that transition to turbulence begins at lower
Reynolds numbers and extends over a wider range of Reynolds
numbers than when no imposed oscillations are present. In addition,
higher levels of intermittency are present with imposed oscillations
for Reynolds numbers 1900 to 2200 at y/d = 0.90. At Reynolds
numbers from 1450 to 1800, frequency spectra evidence high
intensity intermittent turbulent fluctuations, followed and preceded by
quiescent flow, both with and without imposed oscillations. A center
mode of secondary instability is evidenced by high values of normalized
longitudinal turbulence intensity measured in the channel center
when no oscillations are imposed on the flow. Imposed oscillations
are found to suppress this center mode of secondary instability, as
evidenced by reductions in longitudinal turbulence intensity values

near the channel center.
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APPENDIX A

SOFTWARE DIRECTORY

1. HWCAL : This program determines the constants for the King's
Law calibration of the hot-wire. The program also provides a
polynomial fit of the calibration data.
2. HOTWIREPAV : This program is used to read the data stored in
the A/D buffer of the high speed data acquisition system and stores the
information on micro diskettes. Manual inputs are: triggering
frequency, hot-wire DC voltage (ungained), oscillation frequency (flow
blockage), bulk velocity and date and time of run.
3. DATAP : This program calculates instantaneous and phase averaged
velocities. Initially a look up table is created. Here, effective velocities
are calculated from the effective voltage values and stored for follow on
calculations. The hot-wire calibration constants obtained from
HWCAL, and the amplifier gain are incorporated into these
calculations. The velocity calibration is given by the equation:

Uds = k(Eef2- E)/N
where k is the proportionality constant, Egf is the effective voltage,
and E, is the reference voltage at no flow. N is a constant value of 0.45
for moderate Reynolds numbers. Once the look up table is created the
program reads the instantaneous voltage values from the data file and

converts them to instantaneous velocities. At this point a plot of the
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instantaneous velocity versus time can be generated for any of 580
cycles (The first 60 cycles are discarded to allow for flow stabilization
as the unsteady device is started.)

Next the program phase averages the 580 cycles, and velocity
versus phase angle (of the flow blockage) plots are available. Two plots
are available from the averaged values; G versus phase angle and \T

divided by U, versus phase angle, where G is the phase averaged

velocity, \/F is the phase averaged root mean squared velocity, and
U is the average velocity. In the case where there is no imrosed
unsteadiness, the phase averaged velocity, 0, is equal to the time
averaged velocity, U .

The program can also be used to process a set of data when multi-
run averaging is desired. In this case the averaged values are written
to and stored in the computer hard disk memory. Once each of the
desired data sets has been averaged and stored in the computer
memory.

4. AVGPLOT : The program AVGPLOT is used to average any number
of data sets. A maximum of eight sets of data (or 4,640 cycles) were
averaged for this study. The program AVGPLOT provides the same
graphs as those available from DATAP. Phase averaged data sets are
copied to micro diskettes prior to purging them from the computers
memory.

5. INTRMTCY : This program takes the data recorded by
HOTWIREPAV and computes the intermittency. It uses the second

time derivative of the instantaneous velocity, which is calculated
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numerically using the finite difference method. This value is then
compared to a threshold value in an on-off temporal identification

function, ID, is defined such that,

ID=1,if§%)Thr, and

ID =0, otherwise.

The threshold factor, Thr, is determined for a different Reynolds
numbers using a correlation,
Thr = {105 - (64.66 * (Vp1k-1.89)a)}
If the Thr value falls less than 20 then its value is reset to 20. This
correlation is found to give the best correspondence between the
computer detected and visually detected turbulent events.

The values of ID are then phase-averaged and time-averaged for the

traces and the mean intermittency value, 7.
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APPENDIX B

FIGURES
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SCHEMATIC OF FLOW MEASUREMENT EQUIPMENT

Hot-wire Probe
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Figure 4. Schematic of flow measurement equipment
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Figure 168. Re = 1696, f, =1 Hz.
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Figure 177. Smoke-wire patterns for Re = 1604, steady
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Figure 181. Smoke-wire patterns for Re = 1604, f =2 Hz, 3 Hz
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